139 research outputs found

    Action languages: Dimensions, effects

    Get PDF
    Dimensions of action languages are discussed for communication between humans and machines, and the message handling capabilities of object oriented programming systems are examined. Design of action languages is seen to be very contextual. Economical and effective design will depend on features of situations, the tasks intended to be accomplished, and the nature of the devices themselves. Current object oriented systems turn out to have fairly simple and straightforward message handling facilities, which in themselves do little to buffer action or even in some cases to handle competing messages. Even so, it is possible to program a certain amount of discretion about how they react to messages. Such thoughtfulness and perhaps relative autonomy of program modules seems prerequisite to future systems to handle complex interactions in changing situations

    Absolute quantification of Medicago truncatula sucrose synthase isoforms and N-metabolism enzymes in symbiotic root nodules and the detection of novel nodule phosphoproteins by mass spectrometry

    Get PDF
    Mass spectrometry (MS) has become increasingly important for tissue specific protein quantification at the isoform level, as well as for the analysis of protein post-translational regulation mechanisms and turnover rates. Thanks to the development of high accuracy mass spectrometers, peptide sequencing without prior knowledge of the amino acid sequence—de novo sequencing—can be performed. In this work, absolute quantification of a set of key enzymes involved in carbon and nitrogen metabolism in Medicago truncatula ‘Jemalong A17’ root nodules is presented. Among them, sucrose synthase (SuSy; EC 2.4.1.13), one of the central enzymes in sucrose cleavage in root nodules, has been further characterized and the relative phosphorylation state of the three most abundant isoforms has been quantified. De novo sequencing provided sequence information of a so far unidentified peptide, most probably belonging to SuSy2, the second most abundant isoform in M. truncatula root nodules. TiO2-phosphopeptide enrichment led to the identification of not only a phosphorylation site at Ser11 in SuSy1, but also of several novel phosphorylation sites present in other root nodule proteins such as alkaline invertase (AI; EC 3.2.1.26) and an RNA-binding protein

    Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.)

    Get PDF
    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (Nase) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and Nase activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by Nase activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with Nase inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψs). At the nodule level, drought had an inhibitory effect on Nase activity. This decrease in Nase activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation in the nodule could also be associated with an osmoregulatory response to drought and might function as a protective agent against ROS. In droughted nodules, the decrease in N2 fixation was caused by an increase in oxygen resistance that was induced in the nodule. This was a mechanism to avoid oxidative damage associated with reduced respiration activity and the consequent increase in oxygen content. This study highlighted that even though drought had a direct effect on leaves, the deleterious effects of drought on nodules also conditioned leaf responsiveness

    The Role of the Frank–Starling Law in the Transduction of Cellular Work to Whole Organ Pump Function: A Computational Modeling Analysis

    Get PDF
    We have developed a multi-scale biophysical electromechanics model of the rat left ventricle at room temperature. This model has been applied to investigate the relative roles of cellular scale length dependent regulators of tension generation on the transduction of work from the cell to whole organ pump function. Specifically, the role of the length dependent Ca2+ sensitivity of tension (Ca50), filament overlap tension dependence, velocity dependence of tension, and tension dependent binding of Ca2+ to Troponin C on metrics of efficient transduction of work and stress and strain homogeneity were predicted by performing simulations in the absence of each of these feedback mechanisms. The length dependent Ca50 and the filament overlap, which make up the Frank-Starling Law, were found to be the two dominant regulators of the efficient transduction of work. Analyzing the fiber velocity field in the absence of the Frank-Starling mechanisms showed that the decreased efficiency in the transduction of work in the absence of filament overlap effects was caused by increased post systolic shortening, whereas the decreased efficiency in the absence of length dependent Ca50 was caused by an inversion in the regional distribution of strain

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    MRI in active surveillance: a critical review

    Get PDF
    INTRODUCTION: Recent technological advancements and the introduction of modern anatomical and functional sequences have led to a growing role for multiparametric magnetic resonance imaging (mpMRI) in the detection, risk assessment and monitoring of early prostate cancer. This includes men who have been diagnosed with lower-risk prostate cancer and are looking at the option of active surveillance (AS). The purpose of this paper is to review the recent evidence supporting the use of mpMRI at different time points in AS, as well as to discuss some of its potential pitfalls. METHODS: A combination of electronic and manual searching methods were used to identify recent, important papers investigating the role of mpMRI in AS. RESULTS: The high negative predictive value of mpMRI can be exploited for the selection of AS candidates. In addition, mpMRI can be efficiently used to detect higher risk disease in patients already on surveillance. CONCLUSION: Although there is an ongoing debate regarding the precise nature of its optimal implementation, mpMRI is a promising risk stratification tool and should be considered for men on AS

    Postoperative complications after pancreatoduodenectomy for malignancy: results from the Recurrence After Whipple’s (RAW) study

    Get PDF
    Background Pancreatoduodenectomy (PD) is associated with significant postoperative morbidity. Surgeons should have a sound understanding of the potential complications for consenting and benchmarking purposes. Furthermore, preoperative identification of high-risk patients can guide patient selection and potentially allow for targeted prehabilitation and/or individualized treatment regimens. Using a large multicentre cohort, this study aimed to calculate the incidence of all PD complications and identify risk factors. Method Data were extracted from the Recurrence After Whipple’s (RAW) study, a retrospective cohort study of PD outcomes (29 centres from 8 countries, 2012–2015). The incidence and severity of all complications was recorded and potential risk factors for morbidity, major morbidity (Clavien–Dindo grade > IIIa), postoperative pancreatic fistula (POPF), post-pancreatectomy haemorrhage (PPH) and 90-day mortality were investigated. Results Among the 1348 included patients, overall morbidity, major morbidity, POPF, PPH and perioperative death affected 53 per cent (n = 720), 17 per cent (n = 228), 8 per cent (n = 108), 6 per cent (n = 84) and 4 per cent (n = 53), respectively. Following multivariable tests, a high BMI (P = 0.007), an ASA grade > II (P II patients were at increased risk of major morbidity (P < 0.0001), and a raised BMI correlated with a greater risk of POPF (P = 0.001). Conclusion In this multicentre study of PD outcomes, an ASA grade > II was a risk factor for major morbidity and a high BMI was a risk factor for POPF. Patients who are preoperatively identified to be high risk may benefit from targeted prehabilitation or individualized treatment regimens
    corecore